Monatshefte für Chemie Chemical Monthly © Springer-Verlag 1991 Printed in Austria

Synthesis and Crystal Structure of Monoclinic Fe₂(SeO₄)₃

Gerald Giester and Manfred Wildner

Institut für Mineralogie und Kristallographie, Universität Wien, A-1010 Wien, Austria

Summary. Crystals of monoclinic Fe₂(SeO₄)₃ were synthesized under hydrothermal conditions. The structure was determined by single crystal X-ray methods and refined in space group P2₁/n with 2 646 independent reflections ($\sin \theta/\lambda < 0.7 \text{ Å}^{-1}$) to R = 0.033, $R_w = 0.037$: a = 8.530 (2) Å, b = 8.888 (2) Å, c = 11.952 (2) Å, $\beta = 91.13$ (1)°, $V = 906.0 \text{ Å}^3$, Z = 4. The crystal structure is isotypic with the monoclinic modification of Fe₂(SO₄)₃, containing two different Fe(III) and three Se(VI) atomic positions. The FeO₆ and SeO₄ polyhedra are only slightly distorted, the mean Fe – O bond lengths are 1.986 Å and 2.004 Å, the average distances within the SeO₄ tetrahedra are each 1.628 Å. The isolated FeO₆ octahedra only share corners with SeO₄ tetrahedra to build a framework structure.

Keywords. $Fe_2(SeO_4)_3$; Anhydrous ferric selenate(VI); Crystal structure; Crystal chemistry; Hydro-thermal synthesis.

Synthese und Kristallstruktur von monoklinem Fe2(SeO4)3

Zusammenfassung. Kristalle von monoklinem $Fe_2(SeO_4)_3$ wurden unter Hydrothermalbedingungen gezüchtet. Die Struktur wurde mit Einkristall-Röntgenmethoden bestimmt und in der Raumgruppe $P2_1/n$ mit 2646 unabhängigen Reflexen $(\sin\theta/\lambda < 0.7 \text{ Å}^{-1})$ auf R = 0.033, $R_w = 0.037$ verfeinert: a = 8.530(2) Å, b = 8.888(2) Å, c = 11.952(2) Å, $\beta = 91.13(1)^\circ$, $V = 906.0 \text{ Å}^3$, Z = 4. Die Kristallstruktur ist isotyp mit der monoklinen Modifikation von $Fe_2(SO_4)_3$, sie enthält zwei unterschiedliche Fe(III) und drei Se(VI) Atompositionen. Die FeO₆-Polyeder sind nur gering verzerrt, die mittleren Fe – O Bindungslängen sind 1.986 Å und 2.004 Å, die mittleren Abstände in den SeO₄-Tetraedern sind jeweils 1.628 Å. Die isolierten FeO₆-Oktaeder sind nur über gemeinsame Ecken mit SeO₄-Tetraedern verbunden, wobei eine Gerüststruktur entsteht.

Introduction

In course of investigations on the kieserite type compounds $Me^{2+}XO_4 \cdot H_2O$ $(Me^{2+} = Mg, Mn, Fe, Co, Ni, Zn; X=S, Se)$ [1, 2] hydrothermal synthesis experiments in the system FeO-H₂SO₄ or H₂SeO₄-H₂O were made and crystals of Fe(II)Fe(III)₂(SO₄)₄ · 2 H₂O [3], Fe(SO₄) · H₂O [1] and Fe₂(SeO₄)₃ were obtained. The present work deals with the determination and description of the crystal structure of Fe₂(SeO₄)₃, which proved to be isotypic with the monoclinic polymorph of anhydrous ferric sulfate: Fe₂(SO₄)₃ crystallizes in two different modifications with space group R3 and P2₁/n, respectively [4-8]. The corresponding rhombohedral selenate compound Fe₂(SeO₄)₃ was not obtained yet.

Space group	$P2_1/n$
<i>a</i> [Å]	8.530(2)
<i>b</i> [Å]	8.888 (2)
<i>c</i> [Å]	11.952(2)
β [°]	91.13(1)
<i>V</i> [Å ³]	906.0
Formula units per cell	4
Calculated density $\rho_{calc} [gcm^{-3}]$	3.963
Absorption coefficient $\mu(MoK\alpha)$ [cm ⁻¹]	148.9

Table 1. Crystal data, X-ray measurement and structure refinement of Fe₂(SeO₄)₃

Stoe four-circle diffractometer AED2; graphite monochromatized MoK α -radiation; program system STRUCSY (Stoe & Cie, Darmstadt, FRG).

20- ω scans; 40 steps/reflection, increased for $\alpha_1 - \alpha_2$ splitting; step width 0.03°, 0.5-1.5 s/step; 2×5 steps for background measurement; 3 standard reflections each 120 min (variation of I < 2%); $2\theta_{max} = 60^{\circ}$

Extinction coefficient g [10]	$5.6(3) \cdot 10^{-6}$
Total measured reflections $(\pm h, \pm k, +l)$	5 520
Unique data set	2 646
Reflections with $F_0 > 3\sigma(F_0)$ (refinement)	2 503
Number of variables	155
Reliability index R	0.033
$R_w (w = 1/[\sigma(F_0)]^2)$	0.037

Atom	x/a	y/b	z/c	
Fel	0.74782(6)	0.46737(7)	0.61732(4)	
Fe2	0.75228(7)	0.03181(7)	0.38432(5)	
Se1	0.03783(4)	0.25273 (5)	0.49341 (3)	
Se2	0.60362(4)	0.37643 (4)	0.34795(3)	
Se3	0.61108(4)	0.11770 (5)	0.64386(3)	
O 1	0.0896(4)	0.1223 (3)	0.5830(2)	
O2	-0.0671(3)	0.1867(4)	0.3883(2)	
O3	0.1953 (3)	0.3306(4)	0.4455(2)	
O4	-0.0598(4)	0.3754(4)	0.5636(3)	
O5	0.7287(4)	0.4767(4)	0.2787(2)	
O6	0.4250(3)	0.4206(4)	0.3106(2)	
O 7	0.6290(4)	0.4057(4)	0.4808(2)	
O8	0.6210(4)	0.1962(4)	0.3239(2)	
O9	0.6267(4)	-0.0044(4)	0.7444(2)	
O10	0.7346(4)	0.0746(4)	0.5463(2)	
O11	0.4300(3)	0.1123 (4)	0.5966(2)	
012	0.6545 (4)	0.2846(4)	0.6900(2)	

Table 2. Atomic coordinates of Fe₂(SeO₄)₃, e.s.d.'s in parentheses

618

Monoclinic $Fe_2(SeO_4)_3$

Atom	U_{11}	U ₂₂	U ₃₃	<i>U</i> ₁₂	<i>U</i> ₁₃	U ₂₃
Fel	135(2)	103 (3)	135(2)	-1(2)	26(2)	-6(2)
Fe2	144 (2)	109(3)	138(2)	10(2)	24(2)	-2(2)
Se1	127 (2)	91 (2)	145(2)	4(1)	32(1)	5(1)
Se2	127(2)	98(2)	117(2)	3(1)	19(1)	1(1)
Se3	137 (2)	106(2)	118(2)	-12(1)	18(1)	5(1)
O1	212(14)	144 (16)	201 (13)	54 (12)	57(11)	68 (11)
O2	204 (13)	189 (16)	183 (12)	-83(12)	26(10)	-5(12)
O3	137(12)	131 (14)	244 (13)	-9(11)	69 (10)	34(12)
O4	185(14)	174(17)	268 (14)	23 (11)	83 (12)	-30(12)
O5	201 (13)	222 (17)	160(12)	-53(13)	36(10)	32(12)
O6	158 (12)	197 (16)	170(13)	29 (12)	30 (10)	-20(11)
O7	208 (14)	250 (18)	137 (12)	-22(13)	1 (10)	-43(12)
O8	228 (13)	85(14)	252 (13)	44 (12)	-22(11)	-49(12)
O9	221 (13)	169 (15)	180 (12)	-25(13)	-41(11)	63 (12)
O10	213 (14)	271 (18)	155 (12)	-15(13)	65(11)	-44(12)
O11	161 (13)	185(16)	224 (13)	-20(12)	-21(11)	44 (12)
O12	316(15)	109 (15)	155 (12)	- 47 (12)	40(11)	4 (10)

Table 3. Parameters of the anisotropic thermal motion for $Fe_2(SeO_4)_3$; U_{ij} are given in pm²; $ATF = exp[-2\pi^2 \Sigma_i \Sigma_j U_{ij} h_i h_j a_i^* a_j^*]$

Experimental

Crystals of $Fe_2(SeO_4)_3$ were hydrothermally synthesized in "Teflon"-lined steel vessels of 50 cm^3 capacity: a mixture of $Fe(II)C_2O_4 \cdot 2H_2O$, H_2SeO_4 and H_2O (molar ratio $\approx 2:3:10$) was inserted and heated to 450 K. After one week the vessels were cooled to room temperature. As a result, transparent yellow crystals of the title compound in sizes up to 0.5 mm had formed. They were elongated parallel [010], predominant forms were {100}, {010}, {001} and {111}.

Preliminary investigations were made by Weissenberg methods; further X-ray measurements were performed on a Stoe four-circle diffractometer AED2. The lattice parameters were derived by leastsquares techniques from 36 accurate 20 values in the range $30^{\circ} < 20 < 42^{\circ}$. Details of data collection and structure refinement and a summary of crystal data are given in Table 1. The intensities were corrected for Lorentz- and polarisation effects as well as for absorption according to the shape of the crystal. The structure of Fe₂(SeO₄)₃ was solved by direct and Fourier methods. The setting was chosen according to [8]. The final structural parameters, obtained by full-matrix least-squares techniques, are summarized in Tables 2 and 3. Complex scattering curves for neutral atoms were taken from the International Tables for X-ray Crystallography [9] and a secondary isotropic extinction correction [10] was applied.

Results and Discussion

Selected interatomic distances and bond angles for $Fe_2(SeO_4)_3$ are listed in Table 4, bond strengths [11] are given in Table 5. The atomic arrangement is illustrated in Figs. 1 and 2 in projections parallel to [100] and [010]. The crystal structure of $Fe_2(SeO_4)_3$ is built up by isolated FeO_6 polyhedra, which each share only corners with six selenate groups forming a three-dimensional framework structure.

Table 4. Interato	mic distances [Å] and bond angles [°] i	n Fe ₂ (SeO ₄) ₃ with	e.s.d.'s in parenthe	ses (intrapolyhedral O-	O distances are {	given in brackets)
Fe1-03	2.010(3)	03 - Fe1 - 04	92.3(1)	[2.859 (5)]	01 - Fe2 - 02	87.2(1)	[2.775 (5)]
Fe1-04	1.953(3)	03 - Fe1 - O6	84.3(1)	[2.684(4)]	01 - Fe2 - 05	87.4(1)	[2.746(4)]
Fe1-06	1.989(2)	03 - Fe1 - 07	93.6(1)	[2.909(4)]	01 - Fe2 - 010	90.3(1)	[2.792(4)]
Fe1-07	1.981(2)	03 - Fel - 09	93.9(1)	[2.907 (4)]	01 - Fe2 - 011	93.6(1)	[2.906(4)]
Fel - O9	1.967(2)	04 - Fe1 - 07	91.9(1)	[2.827(4)]	02 - Fe2 - 05	96.3(1)	[3.043(4)]
Fe1-012	2.014(3)	04–Fe1–09	83.3(1)	[2.605(4)]	02 - Fe2 - 08	86.1(1)	[2.756(4)]
$\langle Fel - O \rangle$	1.986	04-Fe1-012	98.4(1)	[3.003(4)]	02 - Fe2 - O10	85.5(1)	[2.747 (4)]
		06 - Fe1 - 07	97.1(1)	[2.976(4)]	08 - Fe2 - O5	83.2(1)	[2.648 (4)]
Fe2-01	1.956(3)	06 - Fel - 09	88.2(1)	[2.753 (4)]	O8 - Fe2 - O10	99.4(1)	[3.013(4)]
Fe2-02	2.066(3)	06-Fel-012	85.1(1)	[2.707 (4)]	08 - Fe2 - 011	94.5(1)	[2.937(4)]
Fe2-05	2.019(2)	012-Fe1-07	86.1(1)	[2.727 (4)]	011-Fe2-05	91.8(1)	[2.908(4)]
Fe2-O8	1.969(3)	012-Fe1-09	87.3(1)	[2.749 (4)]	011-Fe2-010	86.5(1)	[2.748(4)]
Fe2-010	1.982(2)	$\langle O-Fel-O \rangle$		[2.809]	$\langle O - Fe2 - O \rangle$		[2.835]
Fe2-011 /Fe2-01	2.031 (3) 2.004						
		01 - Se1 - 02	112.7(2)	[2.723 (4)]	05 - Se2 - O6	110.4(2)	[2.673 (4)]
		01 - Se1 - 03	108.5 (2)	[2.645 (4)]	05 - Se2 - 07	109.5(2)	[2.653 (4)]
		01 - Sel - 04	105.9 (2)	[2.593 (4)]	05 - Se2 - 08	112.6(2)	[2.715(5)]
		02 - Sel - O3	109.0(1)	[2.656 (4)]	06 - Se2 - 07	109.7(2)	[2.655(4)]
Se1-01	1.633 (2)	02 - Se1 - 04	111.1 (2)	[2.683 (4)]	06 - Se2 - 08	106.0(2)	[2.606(4)]
Se1-02	1.637 (2)	03 - Sel - 04	109.5(2)	[2.647 (4)]	07 - Se2 - O8	108.6(2)	[2.643(4)]
Se1-03	1.625 (2)	$\langle 0-Sel-0\rangle$	109.46	[2.658]	$\langle 0 - Se2 - 0 \rangle$	109.46	[2.658]
Se1-04	1.616(3)				· •		
$\langle Sel - O \rangle$	1.628				09 - Se3 - 010	109.1(2)	[2.652(4)]
					09 – Se3 a 011	107.4(2)	[2.626(4)]
Se2-05	1.629(3)	Se3-09	1.623 (3)		09 - Se3 - 012	110.1 (2)	[2.661 (5)]
Se2 - O6	1.627 (2)	Se3 - O10	1.632(3)		010 - Se3 - 011	111.4(2)	[2.699(4)]
Se2-07	1.620(2)	Se3-011	1.635(2)		010 - Se3 - 012	108.1 (2)	[2.636(4)]
Se2-O8	1.635(3)	Se3-012	1.623 (3)		011 - Se3 - 012	110.6(2)	[2.679 (4)]
$\langle Se2 - O \rangle$	1.628	$\langle Se3 - O \rangle$	1.628		$\langle 0 - Se3 - 0 \rangle$	109.47	[2.659]

620

G. Giester and M. Wildner

Monoclinic Fe₂(SeO₄)₃

	Fe1	Fe2	Se1	Se2	Se3	Σν
01		0.59	1.52			2.11
O2		0.44	1.50			1.94
O3	0.51		1.55			2.06
O4	0.59		1.59			2.18
O5		0.49		1.54		2.03
O6	0.54			1.55		2.08
07	0.55			1.57		2.12
O8		0.57		1.51		2.08
O9	0.57				1.56	2.13
O10		0.55			1.52	2.07
011		0.48			1.51	1.99
O12	0.50				1.56	2.06
Σν	3.26	3.11	6.17	6.17	6.16	

Table 5. Bond valence calculations v [v.u.] [11] for $Fe_2(SeO_4)_3$

Fig. 1. Crystal structure of $Fe_2(SeO_4)_3$ in a projection parallel to [100]; Figs. 1 and 2 were drawn with the computer program ATOMS [12]

Fig. 2. Crystal structure of $Fe_2(SeO_4)_3$ in a projection on (010)

In Fe₂(SeO₄)₃ all atoms occupy the general site with point symmetry 1. The two crystallographically different Fe(III) atoms are coordinated to each six oxygen atoms forming slightly distorted octahedra: Fe – O distances range from 1.953 to 2.066 Å with mean values of 1.986 and 2.004 Å for Fe1 and Fe2, which are in accordance to data given in Ref. [13]. The SeO₄ tetrahedra are rather regular with mean Se – O bond lengths of each 1.628 Å for Se1, Se2, and Se3 and are therefore in the range of short \langle Se – O \rangle bond lengths as known for SeO₄ groups [14]. The oxygen atoms are bound to each one Fe and one Se atom only; the Fe – O – Se bond angles vary from 130.7° to 155.3°.

A comparison of the isotypic crystal structures of $Fe_2(SeO_4)_3$ and $Fe_2(SO_4)_3$ [8] reveals that there are only minor differences in the geometry of corresponding coordination polyhedra. The average Fe-O bond lengths in $Fe_2(SO_4)_3$ ($\langle Fe1-O \rangle = 1.981\text{\AA}$, $\langle Fe2-O \rangle = 1.995\text{\AA}$) are somewhat smaller than in the title compound. The distortions of corresponding bond lengths and angles within the FeO_6 octahedra are more pronounced in $Fe_2(SeO_4)_3$; the deviations of O-Fe-Oangles from 90° do not exceed 7.2° for the sulfate and 9.4° for the selenate compound. For a comparison of distortion parameters see Table 6. As for the selenate com-

		$Fe_2(SeO_4)_3$	$Fe_2(SO_4)_3$	
Fel	$\Delta_{\rm oct}$	120.2	69.2	
	σ_{oct}	25.96	9.91	
Fe2	$\Delta_{ m oct}$	365.7	210.7	
	σ_{oct}	24.75	20.67	
Se1, S1	$\Delta_{ m tet}$	24.4	4.2	
	$\sigma_{ m tet}$	5.41	1.86	
Se2, S2	$\Delta_{ m tet}$	10.8	10.8	
	σ_{tet}	4.64	1.66	
Se3, S3	$\Delta_{ m tet}$	10.8	3.8	
	σ_{tet}	2.35	0.80	

Table 6. Distortion parameters of bond distances $\Delta \cdot 10^6$ and bond angles σ for the polyhedra in Fe₂(SO₄)₃ and Fe₂(SeO₄)₃: $\Delta_{oct} = 1/6\Sigma[(d_i - d_m)/d_m]^2$, $\sigma_{oct} = 1/11\Sigma(\theta_i - 90^\circ)^2$, $\Delta_{tet} = 1/4\Sigma[(d_i - d_m)/d_m]^2$, $\sigma_{tet} = 1/5\Sigma(\theta_i - 109.47^\circ)^2$, where d_i are individual, d_m mean bond lengths; θ_i are individual bond angles

pound, the average S-O bond lengths – which are each 1.467Å for S1, S2, and S3, respectively – are also smaller than overall mean $\langle S(VI) - O \rangle$ distances given in Ref. [13]. The variations of the individual S-O and Se-O bond lengths are in good agreement as it holds true for the bond angles: the maximal deviations of the angles O-S-O and O-Se-O from the ideal 109.47° are 2.34° in Fe₂(SO₄)₃ and 3.58° in Fe₂(SeO₄)₃; distortion parameters for the anion groups are also included in Table 6. On the average, the Fe-O-S bond angles are larger than the corresponding Fe-O-Se angles by about 4.8°, differences ranging from 0.9° (O4) to 9.4° (O 10).

Acknowledgements

The authors thank Prof. Dr. J. Zemann as well as Prof. Dr. F. Pertlik and Doz. Dr. H. Effenberger for helpful discussions. For the kind cooperation concerning the drawings we are grateful to Fa. Knischka created Rubies, Steyr. This work was supported by the "Hochschuljubiläumsstiftung der Stadt Wien".

References

- [1] Wildner M., Giester G. (1991) Neues Jahrb. Mineral. Monatsh. (in press)
- [2] Giester G., Wildner M. (1992) Neues Jahrb. Mineral. Monatsh. (in preparation)
- [3] Wildner M., Giester G. (1991) Z. Kristallogr. (in press)
- [4] Kokkoros P. A. (1965) Tschermaks Min. Petr. Mitt. 10: 45
- [5] Moore P. B., Araki T. (1974) Neues Jahrb. Mineral. Abh. 121: 208
- [6] Christidis P. C., Rentzeperis P. J. (1976) Z. Kristallogr. 144: 341
- [7] Christidis P. C., Rentzeperis P. J. (1975) Z. Kristallogr. 141: 233
- [8] Christidis P. C., Rentzeperis P. J., Kirfel A., Will G. (1983) Z. Kristallogr. 164: 219
- [9] Ibers J. A., Hamilton W. C. (eds.) (1974) International Tables for X-Ray Crystallography, Vol. IV. Kynoch Press, Birmingham
- [10] Zachariasen W. H. (1967) Acta Crystallogr. 23: 558
- [11] Brown I. D., Altermatt D. (1985) Acta Crystallogr. B41: 244
- [12] Dowty E. (1989) ATOMS, A Computer Program for Displaying Atomic Structures. Shape Software, Kingsport, TN
- [13] Baur W. H. (1981) Structure and Bonding in Crystals, Vol. II-15. Academic Press, New York
- [14] Gibbs G. V., Chiari G., Louisnathan S. J. (1976) Z. Kristallogr. 143: 166

Received September 1, 1990. Accepted March 4, 1991